Egg (biology)

Bird eggs and others (click on image for key)

In most birds, reptiles, insects, mollusks, fish, and two types of mammals (the echidna and the platypus) an egg (Latin, ovum) is the zygote, resulting from fertilization of the ovum, which is expelled from the body and permitted to develop outside the body until the developing embryo can survive on its own.

Oviparous animals are animals that lay eggs, with little or no other development within the mother. The study or collecting of eggs, particularly bird eggs, is called oology.

Reptile eggs, bird eggs, and monotreme eggs, which are laid out of water, are surrounded by a protective shell, either flexible or inflexible. The special membranes that support these eggs are traits of all amniotes, including mammals.

In eggs laid out of water, the egg is usually incubated, or kept within a favourable temperature range as it nourishes and protects the growing embryo. When the embryo is adequately developed it breaks out of the egg in the process of hatching. Some embryos have a temporary egg tooth with which to crack, pip, or break the eggshell or covering.

The 1.5 kg ostrich egg is the largest egg currently known, though the extinct Aepyornis and some dinosaurs have had larger eggs. The Bee Hummingbird produces the smallest known bird egg, which weighs half of a gram. The eggs laid by some reptiles and most fish can be even smaller, and those of insects and other invertebrates can be much smaller still.

Nudibranch Orange-peel doris Acanthodoris lutea in tide pool laying eggs

Contents

Bird eggs

Bird eggs are laid by females and incubated for a time that varies according to the species; a single young hatches from each egg. Average clutch sizes range from one (as in condors) to about 17 (the Grey Partridge). Some birds lay eggs even when not fertilized (e.g. chickens); it is not uncommon for pet owners to find their lone bird nesting on a clutch of infertile eggs, which are sometimes called wind-eggs.

Colors

Guillemot eggs

The default color of vertebrate eggs is the white of the calcium carbonate from which the shells are made, but some birds, mainly passerines, produce colored eggs. The pigments biliverdin and its zinc chelate give a green or blue ground color, and protoporphyrin produces reds and browns as a ground color or as spotting.

Non-passerines typically have white eggs, except in some ground-nesting groups such as the Charadriiformes, sandgrouse and nightjars, where camouflage is necessary, and some parasitic cuckoos which have to match the passerine host's egg. Most passerines, in contrast, lay colored eggs, even if there is no need of cryptic colors.

However some have suggested that the protoporphyrin markings on passerine eggs actually act to reduce brittleness by acting as a solid state lubricant.[1] If there is insufficient calcium available in the local soil, the egg shell may be thin, especially in a circle around the broad end. Protoporphyrin speckling compensates for this, and increases inversely to the amount of calcium in the soil.[2]

For the same reason, later eggs in a clutch are more spotted than early ones as the female's store of calcium is depleted.

The color of individual eggs is also genetically influenced, and appears to be inherited through the mother only, suggesting that the gene responsible for pigmentation is on the sex determining W chromosome (female birds are WZ, males ZZ).

It used to be thought that color was applied to the shell immediately before laying, but this research shows that coloration is an integral part of the development of the shell, with the same protein responsible for depositing calcium carbonate, or protoporphyrins when there is a lack of that mineral.

In species such as the Common Guillemot, which nest in large groups,each female's eggs have very different markings, making it easier for females to identify their own eggs on the crowded cliff ledges on which they breed.

Shell

Bird eggshells are diverse. For example:

Tiny pores in bird eggshells allow the embryo to breathe. The domestic hen's egg has around 7500 pores.

Shape

Most bird eggs have an oval shape, with one end rounded and the other more pointed. This shape results from the egg being forced through the oviduct. Muscles contract the oviduct behind the egg, pushing it forward. The egg's wall is still shapeable, and the pointy end develops at the back side. Cliff-nesting birds often have highly conical eggs. They are less likely to roll off, tending instead to roll around in a tight circle; this trait is likely to have arisen due to evolution via natural selection. In contrast, many hole-nesting birds have nearly spherical eggs.

Predation

Many animals feed on eggs. For example, principal predators of the Black Oystercatcher's eggs include raccoons, skunks, mink, river and sea otters, gulls, crows and foxes. The stoat (Mustela erminea) and long-tailed weasel (M. frenata) steal ducks' eggs. Snakes of the genera Dasypeltis and Elachistodon specialize in eating eggs.

Brood parasitism occurs in birds when one species lays its eggs in the nest of another. In some cases, the host's eggs are removed or eaten by the female, or expelled by her chick. Brood parasites include the cowbirds and many Old World cuckoos.

Various bird eggs

Fish eggs

Salmon Fry hatching. The larva has grown around the remains of the yolk and the remains of the soft, transparent egg are discarded.
Salmon eggs in different stages of development. In some only a few cells grow on top of the yolk, in the lower right the blood vessels surround the yolk and in the upper left the black eyes are visible.

The most common reproductive strategy for fish is known as oviparity, in which the female lays undeveloped eggs that are externally fertilized by a male. Typically large numbers of eggs are laid at one time (an adult female cod can produce 4–6 million eggs in one spawning) and the eggs are then left to develop without parental care. When the larvae hatch from the egg, they often carry the remains of the yolk in a yolk sac which continues to nourish the larvae for a few days as they learn how to swim. Once the yolk is consumed, there is a critical point after which they must learn how to hunt and feed or they will die.

A few fish, notably the rays and most sharks use ovoviviparity in which the eggs are fertilized and develop internally. However the larvae still grow inside the egg consuming the egg's yolk and without any direct nourishment from the mother. The mother then gives birth to relatively mature young. In certain instances, the physically most developed offspring will devour its smaller siblings for further nutrition while still within the mother's body. This is known as intrauterine cannibalism.

In certain rare scenarios, some fish such as the hammerhead shark and reef shark are viviparous, with the egg being fertilized and developed internally, but with the mother also providing direct nourishment.

Other eggs

Turtle eggs in a nest dug by a female common snapping turtle (Chelydra serpentina)
A frog amongst frogspawn

Invertebrate eggs

Eggs are common among invertebrates, including insects, spiders, mollusks, and crustaceans.

Fish and amphibian eggs

The eggs of fish and amphibians are jellylike. Fish eggs are fertilized externally, typically with the male inseminating the eggs after the female lays them. These eggs do not have a shell and would dry out in the air. Even air-breathing amphibians lay their eggs in water, or in protective foam as with the Coast foam-nest treefrog, Chiromantis xerampelina.

Amniote eggs and embryos

Like amphibians, amniotes are air-breathing vertebrates, but they have complex eggs or embryos, including an amniotic membrane. Amniotes include reptiles, dinosaurs, birds, and mammals.

Reptile eggs are often rubbery and are always initially white. They are able to survive in the air. Often the sex of the developing embryo is determined by the temperature of the surroundings, with cooler temperatures favouring males. Not all reptiles lay eggs; some are viviparous ("live birth").

Dinosaurs laid eggs, some of which have been preserved as petrified fossils.

Among mammals, early extinct species laid eggs, as do platypuses and echidnas (spiny anteaters). Platypuses and two genera of echidna are Australian monotremes. Marsupial and placental mammals do not lay eggs, but their unborn young do have the complex tissues that identify amniotes.

Manufacture of vaccines

Many vaccines for infectious diseases are produced in fertile chicken eggs. The basis of this technology was the discovery in 1931 by Alice Miles Woodruff and Ernest William Goodpasture at Vanderbilt University that the rickettsia and viruses that cause a variety of diseases will grow in chicken embryos. This enabled the development of vaccines against influenza, chicken pox, smallpox, yellow fever, typhus, Rocky mountain spotted fever and other diseases.

Gallery

See also

References

  1. Solomon, S.E. (1987). Egg shell pigmentation. In Egg Quality : Current Problems and Recent Advances (eds R.G. Wells & C.G. Belyarin). Butterworths, London, pp. 147–157.
  2. Gosler, Andrew G.; James P. Higham and S. James Reynolds (2005). "Why are birds’ eggs speckled?". Ecology Letters 8: 1105–1113. doi:10.1111/j.1461-0248.2005.00816.x. 

Further reading

External links